1153 independent reflections 1055 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.050$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(4-methylpiperidinium) hexachloridostannate(IV)

Saira Shahzadi,^a Hamid Nawaz Khan,^b Sagib Ali^{b*} and Madeleine Helliwell^c

^aDepartment of Chemistry, GC University, Faisalabad, Pakistan, ^bDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^cSchool of Chemistry, The University of Manchester, Manchester M13 9PL, England Correspondence e-mail: drsa54@yahoo.com

Received 15 February 2008; accepted 17 March 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.018; wR factor = 0.041; data-to-parameter ratio = 17.7.

The crystal structure of the title compound, $(C_6H_{14}N)_2[SnCl_6]$, is built of 4-methylpiperidinium cations, occupying special positions on the mirror plane, and hexachloridostannate(IV) anions on a special position of 2/m symmetry. The ions are linked via N-H···Cl hydrogen bonds into chains running along the b axis.

Related literature

For related literature, see: Shahzadi, Ali & Fettouhi (2006); Shahzadi, Ali, Bhatti et al. (2006).

Experimental

Crystal data

$(C_6H_{14}N)_2[SnCl_6]$	V = 1064.0 (9) Å ³
$M_r = 531.75$	Z = 2
Orthorhombic, Pnnm	Mo $K\alpha$ radiation
$a = 13.123 (5) \text{\AA}$	$\mu = 1.95 \text{ mm}^{-1}$
b = 7.722 (5) Å	T = 100 (2) K
c = 10.500 (5) Å	$0.25 \times 0.25 \times 0.25$ mm

Data collection

Bruker APEX CCD area-detector	r
diffractometer	
Absorption correction: none	
7975 measured reflections	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.018$ wR(F ²) = 0.040	H atoms treated by a mixture of independent and constrained
S = 1.04	refinement $\Lambda_{0} = 0.78 \text{ e} \text{ Å}^{-3}$
65 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$N1-H1N\cdots Cl1$ $N1-H2N\cdots Cl2^{i}$ $N1-H2N\cdots Cl2^{ii}$	0.88 (3)	2.63 (3)	3.258 (3)	129 (2)
	0.84 (3)	2.72 (2)	3.413 (2)	141.6 (5)
	0.84 (3)	2.72 (2)	3.413 (2)	141.6 (5)

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x, -y + 1, z.

Data collection: SMART (Bruker, 2001): cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

SA is thankful to Quaid-i-Azam University, Islamabad, Pakistan, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2069).

References

Bruker (2001). SMART.

Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Shahzadi, S., Ali, S., Bhatti, M. H., Fettouhi, M. & Athar, M. (2006). J. Organomet. Chem. 691, 1797-1802.

Shahzadi, S., Ali, S. & Fettouhi, M. (2006). Acta Cryst. E62, m1178-m1180. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2008). E64, m573 [doi:10.1107/S1600536808007368]

Bis(4-methylpiperidinium) hexachloridostannate(IV)

S. Shahzadi, H. N. Khan, S. Ali and M. Helliwell

Comment

We report here the crystal structure of the title compound (I) as shown in Fig. 1. The Sn1—Cl distances span the range of 2.417 (1)–2.431 (1) Å; the N1—C1 bond is 1.500 (2) Å. The N—H…Cl bonds link the ions into chains along the *b* axis (Table 1, Fig. 2).

Experimental

The 4-methyl-1-piperidine carbodithioic acid (3.0 g, 17.1 mmol) and tin tetrachloride pentahydrate (5.99 g, 17.1 mmol) were added to 100 ml of dry methanol in round bottom flask and stirred for 6 h. The resulting clear solution was evaporated at room temperature. Colourless crystals of the title compound were obtained after recrystallization in chlorofom and n-hexane (1:1). Yield: 64%. m.p. 228°C.

Refinement

H atoms bonded to C1—C3 were included in riding motion approximation in calculated positions with C—H distances of 0.99 Å and U_{iso} 1.2 times those of the parent atoms; those bonded to C4 and N1 were located in a difference Fourier map and refined isotropically with U_{iso} 1.2 times those of the parent atoms (C4 - H distances 0.93 (2) and 0.95 (3) Å and N1 - H 0.84 (3) and 0.88 (3) Å).

Figures

Fig. 1. Structure of (I) with displacement ellipsoids drawn at the 50% probability level. The unlabelled atoms of the 4-methylpiperidinium cation are symmetry related (symmetry code x, y, -z). The unlabelled Cl atoms are symmetry related to Cl1 (symmetry code -x, 2 - y, -z) and Cl2 (symmetry codes -x, 2 - y, -z; -x, 2 - y, -z).

Fig. 2. Fragment of the crystal packing of (I) showing chain along the b axis, viewed approximately along the diagonal of the bc-plane; H-bonds are shown as dashed lines.

Bis(4-methylpiperidinium) hexachloridostannate

Crystal data (C₆H₁₄N)₂[SnCl₆]

 $F_{000} = 532$

$M_r = 531.75$	$D_{\rm x} = 1.660 {\rm ~Mg~m}^{-3}$
Orthorhombic, Pnnm	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
Hall symbol: -P22n	Cell parameters from 3718 reflections
a = 13.123 (5) Å	$\theta = 2.5 - 26.3^{\circ}$
b = 7.722 (5) Å	$\mu = 1.95 \text{ mm}^{-1}$
c = 10.500 (5) Å	T = 100 (2) K
$V = 1064.0 (9) \text{ Å}^3$	Pyramidal, colourless
Z = 2	$0.25 \times 0.25 \times 0.25 \text{ mm}$

Data collection

Bruker APEX CCD area-detector diffractometer	1055 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.050$
Monochromator: graphite	$\theta_{\rm max} = 26.3^{\circ}$
T = 100(2) K	$\theta_{\min} = 2.5^{\circ}$
φ and ω scans	$h = -16 \rightarrow 16$
Absorption correction: none	$k = -9 \rightarrow 9$
7975 measured reflections	$l = -13 \rightarrow 13$
1153 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.018$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.040$	$w = 1/[\sigma^2(F_o^2) + (0.0164P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
1153 reflections	$\Delta \rho_{max} = 0.78 \text{ e} \text{ Å}^{-3}$
65 parameters	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2^2 . The threshold expression of $F^2^2 > \sigma(F^2^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
0.0000	1.0000	0.0000	0.01428 (9)
0.18119 (5)	0.94377 (8)	0.0000	0.02127 (15)
-0.02412 (3)	0.77582 (6)	0.15973 (4)	0.02279 (12)
0.16716 (17)	0.5226 (3)	0.0000	0.0187 (5)
0.128 (2)	0.615 (4)	0.0000	0.022*
0.130 (2)	0.434 (4)	0.0000	0.022*
0.23016 (14)	0.5228 (2)	0.11919 (17)	0.0202 (4)
0.1850	0.5171	0.1946	0.024*
0.2701	0.6313	0.1242	0.024*
0.30167 (13)	0.3686 (2)	0.11902 (17)	0.0194 (4)
0.2611	0.2607	0.1235	0.023*
0.3456	0.3736	0.1956	0.023*
0.36885 (19)	0.3640 (3)	0.0000	0.0194 (6)
0.4130	0.4696	0.0000	0.023*
0.4374 (2)	0.2055 (4)	0.0000	0.0271 (7)
0.4780 (15)	0.200 (3)	-0.0726 (19)	0.032*
0.399 (2)	0.102 (4)	0.0000	0.032*
	x 0.0000 0.18119 (5) -0.02412 (3) 0.16716 (17) 0.128 (2) 0.130 (2) 0.23016 (14) 0.23016 (14) 0.30167 (13) 0.2611 0.3456 0.36885 (19) 0.4130 0.4374 (2) 0.4780 (15) 0.399 (2)	x y 0.0000 1.0000 0.18119 (5) 0.94377 (8) -0.02412 (3) 0.77582 (6) 0.16716 (17) 0.5226 (3) 0.128 (2) 0.615 (4) 0.130 (2) 0.434 (4) 0.23016 (14) 0.5228 (2) 0.1850 0.5171 0.2701 0.6313 0.30167 (13) 0.3686 (2) 0.2611 0.2607 0.3456 0.3736 0.36885 (19) 0.3640 (3) 0.4130 0.4696 0.4374 (2) 0.200 (3) 0.4780 (15) 0.200 (3) 0.399 (2) 0.102 (4)	x y z 0.0000 1.0000 0.0000 0.18119 (5) 0.94377 (8) 0.0000 -0.02412 (3) 0.77582 (6) 0.15973 (4) 0.16716 (17) 0.5226 (3) 0.0000 0.128 (2) 0.615 (4) 0.0000 0.130 (2) 0.434 (4) 0.0000 0.23016 (14) 0.5228 (2) 0.11919 (17) 0.1850 0.5171 0.1946 0.2701 0.6313 0.1242 0.30167 (13) 0.3686 (2) 0.11902 (17) 0.2611 0.2607 0.1235 0.3456 0.3736 0.1956 0.36885 (19) 0.3640 (3) 0.0000 0.4130 0.4696 0.0000 0.4374 (2) 0.2055 (4) 0.0000 0.4780 (15) 0.200 (3) -0.0726 (19) 0.399 (2) 0.102 (4) 0.0000

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01250 (13)	0.01126 (13)	0.01907 (14)	-0.00031 (9)	0.000	0.000
Cl1	0.0136 (3)	0.0153 (3)	0.0349 (4)	0.0005 (2)	0.000	0.000
Cl2	0.0214 (2)	0.0228 (2)	0.0242 (3)	-0.00568 (18)	-0.00453 (18)	0.00756 (19)
N1	0.0165 (11)	0.0122 (12)	0.0274 (13)	0.0012 (9)	0.000	0.000
C1	0.0205 (10)	0.0199 (10)	0.0203 (10)	-0.0007 (8)	-0.0011 (7)	-0.0040 (8)
C2	0.0189 (10)	0.0200 (10)	0.0192 (10)	0.0010 (8)	-0.0028 (8)	-0.0011 (8)
C3	0.0151 (13)	0.0189 (14)	0.0241 (15)	0.0003 (10)	0.000	0.000
C4	0.0239 (16)	0.0321 (18)	0.0252 (17)	0.0102 (13)	0.000	0.000

Geometric parameters (Å, °)

Sn1—Cl1	2.4170 (11)	C1—H1C	0.9900
Sn1—Cl1 ⁱ	2.4170 (11)	C1—H1D	0.9900
Sn1—Cl2 ⁱⁱ	2.4310 (11)	C2—C3	1.530 (2)
Sn1—Cl2 ⁱⁱⁱ	2.4310 (11)	C2—H2A	0.9900
Sn1—Cl2 ⁱ	2.4310 (11)	C2—H2B	0.9900
Sn1—Cl2	2.4310 (11)	C3—C4	1.519 (4)
N1—C1 ⁱⁱⁱ	1.500 (2)	C3—C2 ⁱⁱⁱ	1.530 (2)
N1—C1	1.500 (2)	С3—Н3	1.0000
N1—H1N	0.88 (3)	C4—H4A	0.931 (19)
N1—H2N	0.84 (3)	C4—H4B	0.95 (3)
C1—C2	1.516 (2)		

supplementary materials

Cl1—Sn1—Cl1 ⁱ	180.000 (5)	N1—C1—C2	109.83 (15)
Cl1—Sn1—Cl2 ⁱⁱ	89.990 (19)	N1—C1—H1C	109.7
Cl1 ⁱ —Sn1—Cl2 ⁱⁱ	90.010 (19)	C2—C1—H1C	109.7
Cl1—Sn1—Cl2 ⁱⁱⁱ	90.010 (19)	N1—C1—H1D	109.7
Cl1 ⁱ —Sn1—Cl2 ⁱⁱⁱ	89.990 (19)	C2—C1—H1D	109.7
Cl2 ⁱⁱ —Sn1—Cl2 ⁱⁱⁱ	180.0	H1C—C1—H1D	108.2
Cl1—Sn1—Cl2 ⁱ	89.990 (19)	C1—C2—C3	112.08 (16)
Cl1 ⁱ —Sn1—Cl2 ⁱ	90.010 (19)	C1—C2—H2A	109.2
Cl2 ⁱⁱ —Sn1—Cl2 ⁱ	87.24 (5)	C3—C2—H2A	109.2
Cl2 ⁱⁱⁱ —Sn1—Cl2 ⁱ	92.76 (5)	C1—C2—H2B	109.2
Cl1—Sn1—Cl2	90.010 (19)	С3—С2—Н2В	109.2
Cl1 ⁱ —Sn1—Cl2	89.990 (19)	H2A—C2—H2B	107.9
Cl2 ⁱⁱ —Sn1—Cl2	92.76 (5)	C4—C3—C2 ⁱⁱⁱ	111.10 (15)
Cl2 ⁱⁱⁱ —Sn1—Cl2	87.24 (5)	C4—C3—C2	111.10 (15)
Cl2 ⁱ —Sn1—Cl2	180.0	C2 ⁱⁱⁱ —C3—C2	109.6 (2)
C1 ⁱⁱⁱ —N1—C1	113.1 (2)	С4—С3—Н3	108.3
C1 ⁱⁱⁱ —N1—H1N	108.7 (8)	C2 ⁱⁱⁱ —C3—H3	108.3
C1—N1—H1N	108.7 (8)	С2—С3—Н3	108.3
C1 ⁱⁱⁱ —N1—H2N	108.6 (10)	C3—C4—H4A	112.1 (14)
C1—N1—H2N	108.6 (10)	С3—С4—Н4В	111.2 (18)
H1N—N1—H2N	109 (3)	H4A—C4—H4B	105.6 (17)
C1 ⁱⁱⁱ —N1—C1—C2	-56.8 (2)	C1—C2—C3—C4	-178.20 (18)
N1—C1—C2—C3	55.7 (2)	C1—C2—C3—C2 ⁱⁱⁱ	-55.1 (2)

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) -*x*, -*y*+2, *z*; (iii) *x*, *y*, -*z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1N…Cl1	0.88 (3)	2.63 (3)	3.258 (3)	129 (2)
N1—H2N····Cl2 ^{iv}	0.84 (3)	2.72 (2)	3.413 (2)	141.6 (5)
N1—H2N····Cl2 ^v	0.84 (3)	2.72 (2)	3.413 (2)	141.6 (5)
Symmetry codes: (iv) $-x, -y+1, -z$; (v) $-x, -y+1, z$.				

